Sale!

design and construction of an obstacle detection system for the visually impaired

In this present study, an obstacle detection system for the visually impaired sensor for detecting obstacle is developed. It is developed as a place detecting device. By using this stick, blind person will be confirmed that, he has reached the place where he wanted to go. It is easy to maintain and very comfortable to use. Power consumption of this stick is low and can be operated easily. Moreover, it is fully automated. This stick also enables to detect obstacles in user’s way by using an IR sensor. So, it is very helpful for the blind to reach his destination safely.

Arduino UNO is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller. The Arduino module, IR sensor and buzzer all are connected with it.

Electromechanical buzzer is used for creating two different types of buzzing sound. It is an audio signaling device which is identical to an electric bell without the metal gong. It functions by means of an electromagnet. When an electric current is applied, it produces a repetitive buzzing or clanging sound. A relay may be connected to interrupt its own actuating current, causing the contacts to buzz. Often these units were anchored to a wall or ceiling to use it as a sounding board.

For detecting obstacles, IR sensor is used. The IR LED transmits the IR signal on to the object and the signal is reflected back from the surface of the object. The reflected signals are received by an IR receiver (LDR). Both the LED and LDR consume 3.5 volt power.

Original price was: ₦ 3,000.00.Current price is: ₦ 2,999.00.

Description

ABSTRACT

Generally, blind people use a traditional cane for moving from one place to other. Although, white cane is the international symbol of blindness, it could not help them to detect place and to avoid obstacles. In this paper, we represent a model that aids  blind people. It consists of Arduino, IR sensor and buzzer. This stick can obstacles. Position detection part is done with IR sensor. IR sensor is used for detecting obstacles. Here, the buzzer produces two types of sound. When the blind reaches to his destination, buzzer buzzes continuously. When the blind faces any obstacles, buzzer buzzes discontinuously. By hearing this two types of sound, blind can be confirmed about his destination and also can avoid obstacles in front of him. The whole system is designed to be small, light and is used in conjunction with the white cane so that it could ensure safety of the blind.

TABLE OF CONTENTS

 TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

TABLE OF CONTENT

CHAPTER ONE

  • INTRODUCTION
  • BACKGROUND OF THE PROJECT
  • PURPOSE OF THE PROJECT
  • OBJECTIVE OF THE PROJECT
  • SIGNIFICANCE OF THE PROJECT
  • SCOPE OF THE PROJECT

CHAPTER TWO

LITERATURE REVIEW

2.0      LITERATURE REVIEW

2.1      OVERVIEW OF BLINDNESS

2.2     REVIEW OF THE STUDY

2.3     DESCRIPTION OF ARDUINO

2.4    DESCRIPTION OF IR SENSOR

2.5    THEORY OF IR SENSOR OPERATION

2.6    THEORY OF BUZZER/SPEAKER

2.7    THEORY VIBRATION MOTOR DRIVER

CHAPTER THREE

DESIGN METHODOLOGY

3.1      SYSTEM BLOCK DIAGRAM

3.2      DESCRIPTION OF THE SYSTEM BLOCK DIAGRAM

3.3      SCHEMATIC DIAGRAM

3.4      SYSTEM OPERATION

3.5      COMPONENTS LIST

3.6      CIRCUIT DESCRIPTION AND CONNECTIONS

3.7     CIRCUIT WORKING PRINCIPLE

3.8     SYSTEM PROGRAMME

CHAPTER FOUR

RESULT ANALYSIS

4.1 CONSTRUCTION PROCEDURE AND TESTING

4.2 ASSEMBLING OF SECTIONS

4.3 PACKAGING

4.4 MOUNTING PROCEDURE

4.5 TESTING

4.6 RESULT ANALYSIS

4.7 COST ANALYSIS

CHAPTER FIVE

5.0      CONCLUSIONS, RECOMMENDATION AND REFERENCES

  • CONCLUSIONS
  • RECOMMENDATION

CHAPTER ONE

1.0                                                        INTRODUCTION

Eyes are the most important sense of organ of human. We perceive up to 80 per cent of all impressions by means of our sight. According to the 2014 statistics of World Health Organization, 285 million people are estimated to be visually impaired worldwide, 39 million are blind and 246 have low vision. The people with low vision or no vision suffer from various problems. Mobility and orientation are two of them [1].  The traditional and oldest mobility aids for the blind are the white cane and guide dog. As white cane is the international symbol of blindness, the visual presence of white cane helps to understand others that the user is blind. It also helps the blind to reach destination and avoid obstacles in ground but it could not protect him from all level of obstacles. On the other hand, Guide dog is able to detect and analyze complex situations: cross walks, stairs, potential danger, know paths and more. But guide dogs are still far from being affordable, around the price of a nice car, and their average working time is limited, an average of 7 years. So these traditional mobility aids have many drawbacks.

1.2                                          BACKGROUND OF THE PROJECT

A number of navigation systems for aiding the blind have been developed already. This developed system can be categorized into two groups. The first group is Electronic Travel Aids (ETAs) and the second group is Electronic Orientation Aids (EOAs). ETAs are designed to create a safe journey by detecting obstacles using ultrasonic and proximity sensor [1].

An obstacle detection system for the visually impaired sensor for detecting obstacle was developed [2]. It used stereo camera and dual feedback system .Another system for detecting obstacles was created [5]. It was a wheeled stick. When it detected obstacles, it automatically steered around and made the user to follow the obstacles free path without any conscious effort.

1.3                                              PURPOSE OF THE PROJECT

The purposes are as follows:

  1. To detect place with the stick.
  2. To detect obstacles with the stick.
  3. To ensure safe walking of the blind.
  4. To help the blind to reach his destination safely and securely.
  5. To create a cheap and comfortable mobility aid for the blind.

1.4                                                   AIM OF THE PROJECT

This objective of this work is to develop an aid for visually impaired persons. This project is capable of detecting any obstacle, detect water and corners and even allow the user to find the stick if anyhow missed by the user by pressing a remote switch.

1.5                                         SIGNIFICANCE OF THE PROJECT

The device is designed with an intention to sort out common issues faced by the blind people while using traditional sticks. With the electronics embedded within the stick, it became a smart stick with the functionalities mentioned above.

1.6                                                 SCOPE OF THE PROJECT

In this present study, an obstacle detection system for the visually impaired sensor for detecting obstacle is developed. It is developed as a place detecting device. By using this stick, blind person will be confirmed that, he has reached the place where he wanted to go. It is easy to maintain and very comfortable to use. Power consumption of this stick is low and can be operated easily. Moreover, it is fully automated. This stick also enables to detect obstacles in user’s way by using an IR sensor. So, it is very helpful for the blind to reach his destination safely.

Arduino UNO is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller. The Arduino module, IR sensor and buzzer all are connected with it.

Electromechanical buzzer is used for creating two different types of buzzing sound. It is an audio signaling device which is identical to an electric bell without the metal gong. It functions by means of an electromagnet. When an electric current is applied, it produces a repetitive buzzing or clanging sound. A relay may be connected to interrupt its own actuating current, causing the contacts to buzz. Often these units were anchored to a wall or ceiling to use it as a sounding board.

For detecting obstacles, IR sensor is used. The IR LED transmits the IR signal on to the object and the signal is reflected back from the surface of the object. The reflected signals are received by an IR receiver (LDR). Both the LED and LDR consume 3.5 volt power.

CHAPTER FIVE

5.1                                                           CONCLUSION

From the performance of the developed blind stick, the following conclusions are drawn:  The value of latitude and longitude after 2 spaces from the decimal point changes frequently. Sometimes, it starts to buzz after a few distances from the predefined location. But it does not a problem because the error is only a few centimeters. The area of the location point can be easily detected with it.  Obstacles detection zone is very small. It can’t detect obstacles which are out of 45° from the direction of the stick.

5.2                                                    RECOMMENDATION

A simple, cheap, configurable, easy to handle electronic guidance system is proposed to provide constructive assistant and support for blind and visually impaired persons. The system is designed, implemented, tested, and verified. The real-time results of the system are encouraging; it revealed an accuracy of 93% in detecting different shapes, materials, and distances. The results indicate that the system is efficient and unique in its capability in specifying the source and distance of the objects that may encounter the blind. It is able to scan areas left, right, and in front of the blind person regardless of its height or depth. Therefore, it was favoured by those who participated in the test. The IR sensor has been fully utilized in order to advance the mobility of the blind and visual impaired people in safe and independent way. This system does not require a huge device to be hold for a long distance, and it also does not require any special training. This system also resolves limitations that are related to the most of the movement problems that may influence the blind people in their environment. We recommend that the future work will be focused on enhancing the performance of the system and reducing the load on the user by replacing the speaker’s tune by real human sound to guide the blind exactly. Moreover, shape detection test for objects that move at different rotational speeds across several distances will further be considered.