Sale!

CONSTRUCTION OF 1KVA HYBRID INVERTER

The scope of this work is to build a Hybrid Inverter that consistuse of solar and wind energy. Hybrid Inverter with Solar and wind System consists of ainverter powered by a 12V Battery.

Hybrid power inverter system is consisted of solar panels, charger controllers, inverters and rechargeable batteries. Hybrid inverter systems generate power in the same way as a common grid-tie solar system but use special hybrid inverters and batteries to store energy for later use.

Original price was: ₦ 3,000.00.Current price is: ₦ 2,999.00.

Description

ABSTRACT

Renewable energy sources i.e., energy generated from solar, wind, biomass, hydro power, geothermal and ocean resources are considered as a technological option for generating clean energy. But the energy generated from solar and wind is much less than the production by fossil fuels, however, electricity generation by utilizing PV cells and wind turbine increased rapidly in recent years. This paper presents the Solar-Wind hybrid inverter system that harnesses the renewable energies in Sun and Wind to generate electricity. System control relies mainly on micro controller. It ensures the optimum utilization of resources and hence improve the efficiency as compared with their individual mode of generation. Also it increases the reliability and reduces the dependence on one single source. This hybrid solar-wind inverter system is suitable for industries and also domestic areas.

CHAPTER ONE

1.0                                                        INTRODUCTION

1.1                            BACKGROUND OF THE STUDY

Electricity is the principal force that powers modern society. It lights buildings and streets, runs computers and telephones, drives trains and subways and operates all variety of motors and machines (“Powering a Generation”, 2014).

It is important to recognize that electricity is not mined or harvested, it must be manufactured. Since it is not easily stored in quantity, it must be manufactured at the time of demand. Electricity is a form of energy, but not an energy source. Different generating plants harness different energy sources to make electrical power. Some of these sources are thermal plants, kinetic plants, geothermal power and solar photovoltaics (“Generating Electricity”, n.d.).

Since, the demand for electricity in this area of the world is alarming, there is the need for the production or generation of constant electricity, due to the epileptic condition of electricity in the country. This gives rise to the design and construction of a 1KVA hybrid inverter.

A hybrid inverter, otherwise known as a hybrid grid-tied inverter or a battery-based inverter, combines two separate components–a solar inverter and a battery inverter–into a single piece of equipment.

An inverter is a critical component of any solar energy system: you need it to convert the direct current (DC) electricity generated by your solar panels into alternating current (AC) electricity for your home’s appliances.

However, when you pair your solar panel system with a hybrid inverter, a separate battery inverter isn’t necessary: it can function as both an inverter for electricity from solar panels and a solar battery.

Hybrid solar systems generate power in the same way as a common grid-tie solar system but use special hybrid inverters and batteries to store energy for later use. This ability to store energy enables most hybrid systems to also operate as a backup power supply during a blackout, similar to a UPS system.

Traditionally the term hybrid referred to two generation sources such as wind and solar but in the solar world the term ‘hybrid’ refers to a combination of solar and energy storage which is also connected to the electricity grid.

A solar hybrid inverter’s main job is to convert DC power generated from the array into usable AC power. Hybrid inverters go a step further and work with batteries to store excess power as well. This type of system solves issues renewable energy variability and unreliable grid structures.

Hybrid inverters are commonly used in the developing world, but they are starting to make their way into daily use in certain areas of the U.S and some part of Africa due to their ability to stabilize energy availability. Hybrid inverters work with batteries to store power which is the aim of this project.

1.2                                                  PROBLEM STATEMENT

As a result of continuous power failure and fluctuation in power supply by Power Holding Company of Nigeria (PHCN), sensitive appliances and system are affected by interruption power supply which was the reason why an inverter was invented. Inverters are widely used in the domestic as well as industrial environments to serve as second line of source in case of power cut from the electricity utility grids. The problem with the inverter is that the battery of the inverter dies out with the use of heavy load appliances. This project is designed in such a way that it overcomes this limitation by the use of solar and wind energy. Hybrid Inverter with Solar and wind System consists of ainverter powered by a 12V Battery.

1.3                                  AIM AND OBJECTIVES OF THE PROJECT

To provide uninterrupted power supply to domestic appliances and lightings where there is public mains supply failure and also generates a stable source of power supply.

The objectives are:

  • To avoid noise in the surrounding which is produced by gasoline engines such as diesel and petro generators.
  • To save cost of fueling and maintenance of gasoline engine generators.
  • To reduce damage of electronic appliances as a result of unstable power supply.
  • To ensure that, there is continuous power supply.
  • To generate 220V AC output from a 12V DC source.

1.4                                                 SCOPE OF THE PROJECT

The scope of this work is to build a Hybrid Inverter that consistuse of solar and wind energy. Hybrid Inverter with Solar and wind System consists of ainverter powered by a 12V Battery.

Hybrid power inverter system is consisted of solar panels, charger controllers, inverters and rechargeable batteries. Hybrid inverter systems generate power in the same way as a common grid-tie solar system but use special hybrid inverters and batteries to store energy for later use.

1.5                                              PURPOSE OF THE PROJECT

The main purpose of this work is to ensure that, there is continuous power supply forresidential and industrial

1.6                                         SIGNIFICANCE OF THE PROJECT

Hybrid inverter is useful in making appliances work at residential and industrial levels, such as:

  1. Allows you to store excess solar or low cost (off-peak) electricity.
  2. Allows use of stored solar energy during peak evening times (known as self-use or load-shifting)
  • Most hybrid inverters have backup power capability.
  1. Reduces power consumption from the grid (reduced demand)
  2. Enables advanced energy management (ie. peak shaving)

1.8                                                  DEFINITION OF TERMS

Inverter: An apparatus which converts direct current into alternating current.

Solar energy: This is a radiant energy emitted by the sun

Assemble: Togather together solar inverter accessories for the purpose of producing electricity.

Photovoltaics: Photovoltaic or PV technology employs solar cells or solar photovoltaic arrays to convert energy from the sun into electricity. Solar cells produce direct current electricity from the sun’s rays, which can be used to power equipment or to recharge batteries. Many pocket calculators incorporate a single solar cell, but for larger applications, cells are generally grouped together to form PV modules that are in turn arranged in solar arrays.

CHAPTER FIVE

5.0                 SUMMARY, CONCLUSION AND RECOMMENDATION

SUMMARY

In the present work a Solar PV Wind Hybrid Energy System was implemented. A portion of the energy requirement for a private house, farm house, a small company, an educational institution or an apartment house depending on the need at the site where used has been supplied with the electricity generated from the wind and solar power. It reduces the dependence on one single source and has increased the reliability. Hence we could improve the efficiency of the system as compared with their individual mode of generation.

5.2      CONCLUSION

In this study, the design steps of a system supplied by a mix of photo voltaic and wind energy were discussed. Firstly,general information about the employed solar panels and wind turbine were provided,the basic features were mentioned and how the system was built was explained in details. The system was tested to work correctly, by making a series of measurements and by connecting several loads to the system. Wind and solar power-related measurements and calculations and plots are presented in this study. The effect of temperature on efficiency of solar cells and effect of windon wind turbine efficiency are investigated. The standalone hybrid system is realized experimentally in this study. With this hybrid power system, other scientific studies are performed and continue to be realized.

5.3      RECOMMENDATION

This project is designed to be used in our homes, offices and industries where there is need for 24hrs supply. And should be used and maintain by a qualified personnel. A dip cycle battery is also recommended.